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A semi-implicit method for solving the 3-dimensional magnetohydrodynamic equaiions on 
long time scales is presented. Standard explicit methods must use time steps which are con- 
strained by a Courant-Friedrichs-Lewy condition due to the fast compressional and shear 
alfven motion. This semi-implicit method eliminates both of these restrictions so that very 
large time steps are permrtted. The method 1s sample to implement and the computation time 
for one time step is essentially the same as for explicit methods. Numerical test results in slab 
and cylindrical geometry are presented. 0 1986 Academic Press. Inc. 

I. TNTR~DUCTION 

The magnetohydrodynamic (MHD) equations are used extensively to study the 
macroscopic behavior of plasmas [ 1,2 3. Three-dimensional time-dependent com- 
putations are difficult due to the presence of widely disparate time scales in the 
MI-ID equations. Explicit methods are forced to use time steps limited by a very 
restrictive Courant-Friedrichs-Lewy (CFL) condition imposed by the fast com- 
pressional (magnetosonic) motion. Two-dimensional MHD computations using 
implicit methods have been performed by a number of authors (e.g., Schnack and 
Killeen [2], DeLucia and Jardin [3]). Implicit schemes for the 3-dimensional 
MHD equations have also been developed 1[4] but have generally had the dis- 
advantages of being very complicated to implement and requiring the solution of 
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large block matrix equations. A common approach to eliminate the fast com- 
pressional CFL condition is to make analytic approximations such as in the 
reduced equations [S-7] (inverse aspect ratio expansion) or incompressible models. 
Unfortunately, in many problems (e.g., incompressible reversed-field pinch dynamo 
computations [S]) important features of the physical system are also eliminated by 
these approximations. Recently, two different methods have been developed in 
order to solve the full compressible MHD equations in three dimensions, but 
without a CFL time step restriction due to the fast modes. One approach is that of 
Aydemir and Barnes [9] where an implicit pressure advance is used to eliminate 
the fast mode constraint. The other method is the semi-implicit method of Harned 
and Kerner [ 10, 111 in which new terms are added to the time discretized MHD 
equations. These new terms do not affect the solution as dt --t 0, but still produce a 
method that is unconditionally stable with respect to the fast modes. 

Once the fast compressional time step constraint has been eliminated, the time 
step is then limited by a shear Alfven CFL constraint. This constraint is particularly 
severe in the case of the reversed-field pinch, in which the toroidal and poloidal 
magnetic fields are comparable. In tokamak plasmas the shear Alfven CFL con- 
dition becomes very restrictive in the nonlinear phase of resistive instabilities. The 
methods of [9-l 11, as well as incompressible and reduced equation methods, all 
require a substantial reduction in time step in the highly nonlinear stages of 
resistive instabilities, which ultimately limit their capabilities. 

Semi-implicit methods are well suited for use in eliminating the overly restrictive 
constraints of ideal MHD, because they are very flexible and simple to implement. 
In a semi-implicit method, terms which approximate the linear behavior of fast nor- 
mal modes are treated implicitly in order to enhance the numerical stability of the 
method. Although these methods may be used effectively with grid point models, 
they are most powerful when used in conjunction with a spectral representation. In 
large scale meteorological calculations semi-implicit methods were first introduced 
El21 to eliminate the severe time step constraint due to external gravity waves. 
These methods are used extensively now in meteorology [13-161 to .produce 
accurate computations with much larger times steps than are permitted in explicit 
methods, yet without the added complexity of implicit algorithms. In this paper we 
develop a semi-implicit algorithm for the long time scale numerical solution of the 
3-dimensional MHD equations by generalizing the method of Harned and Ker- 
ner [lo, 111 to remove the shear Alfven time step restriction. 

The method to be described here is designed to eliminate the shear Alfven time 
step restriction as well as that due to the fast compressional waves. It is much sim- 
pler to implement than an implicit method and the computation time required for a 
time step is essentially the same as that for an explicit method. Section II describes 
the model and the semi-implicit method. The results of numerical tests are presen- 
ted in Section III and conclusions are given in Section IV. 
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II. SEMI-IMPLICIT MHD METHOD 

The compressible resistive MHD equations may be written 

a5 
at= -(v.v)v+~ [(VxB)xB-VP] 

P 
aA 

-ax&r/VxVxd 
at- 

O’P 
at- 

- -5. VP - yPV . V + dissipative terms 

B=Vx2 

where 5 is the velocity, B the magnetic field, P the plasma pressure, p the density, 
and ye the resistivity. A is the vector potential and the gauge condition 4 = 0 has 
been used. Resistive instabilities are important in the analysis of fusion 
However, they evolve on a time scale which is long compared to i 
(e.g., fast compressional and shear Alfven). Therefore, in order to solve Eqs. (l)-(5) 
numerically, it is desirable to develop a method that is not forced to use time steps 
constrained by the rapid ideal motion. 

To remove the time step constraint imposed by the fast compressional modes a 
semi-implicit method was used in [lo, 111. Because of the flexibility of this method 
it is natural to try to extend it to eliminate the shear Alfven time step constraint as 
well. In a semi-implicit method one advances all of the terms in the original 
equations explicitly. New terms are added to the time discretized equations which 
do not affect the solution in the limit d t --t 0 (i.e., the method is still consistent). 
Then some of these “semi-implicit” terms are treated implicitly. As an example con- 
sider the simple hyperbolic system, 

au au 
at=“& 

a0 au 
at=%’ 

These equations may be rewritten 

(6) 

(71 

a% 2 a2u 
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To develop a semi-implicit method, a new term is subtracted from each side of 
Eq. (81, 

a2u a2u a224 a224 --(-4-4--a;-- 
at2 a.9 ax2 a.? 

a, is a constant coefficient and will be chosen primarily from numerical stability 
considerations. Equation (9) is then time differenced as 

(3zun + 1 

I.4 n+ l- a;(dt)2~ 

=u”+udt g “+u2(At)2~-u~(dt)2~. ( ) ahn 

A practical way to time advance Eqs. (6) and (7) in order to obtain an algorithm 
equivalent to Eq. (10) is with a two step predictor-corrector 

v*=v”+audtaU” ax 
aZUn + 1 

U n+1-u;(L4t)2~= U2+Unt~-u;(At)2$ 

V n+‘=fl”+(u/2)dt -II+ (2 !?g) 

(11) 

with 0.5 < a d 1.0. This method is unconditionally stable if ai > (a2/16)(1 + 2a)‘. 
For a simple l-dimensional case like this the semi-implicit method offers no advan- 
tages over an implicit method. However, if a problem is 3-dimensional and spectral 
in two dimensions with nonconstant coefficients, an implicit method is difficult 
because it requires performing convolutions in the implicit terms. This leads to a 
complicated matrix equation. In the semi-implicit method the constant coefficient 
semi-implicit terms require no convolutions; therefore, only a simple tridiagonal 
solution is needed. Another important feature of the method is the use of the 
second-order equations for discretization. If the method were applied to the original 
first-order equations, the sign of a becomes important. If a changes sign, the con- 
stant coefficient semi-implicit term would not stabilize the system because in the 
region where a and a, are of opposite sign the semi-implicit term would actually be 
destabilizing. However, in the second-order equation, Eq. (9), the coefficient only 
enters as a2 so that the sign does not matter and the semi-implicit treatment 
becomes very simple. 
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In [ 10, 1 l] the fast compressional time step constraint was eliminated 
ing a semi-implicit term having the same form as the fast modes. This ter 
tracted from each side of a second-order equation. Then the MHD equations, with 
the new semi-implicit terms included, were differenced in a predictor-corrector 
scheme analogous to Eqs. (ll)-( 14). To extend the method to also elimin 
shear Alfven time scale, we must derive a new semi-implicit term. First, the 
equations are linearized, assuming a uniform magnetic field, density, and pressure. 
Then, after some algebra, Eqs. (l)-(5) reduce to 

~=[VxVx(L’XBo),xBo+yP,v(V-V). (151 

To arrive at a semi-implicit term, &, is replaced with a vector quantity with con- 
stant coefficients, C, = C,f = C, j + C,f, where C,, CY, and C, are all constant In 
space. The pressure term is dropped, because it enters in the magnetosonic mo 
with the same form as the perpendicular magnetic field. Therefore, the semi-implicit 
term is just 

ne now naively hopes that this term could be used in a predictor~corr~~t~r 
method to eliminate the shear Alfven time step constraint in the same way as the 
fast mode time step constraint was eliminated. This philosophy suggests the follow- 
ing algorithm. First, a simple explicit predictor advance is performed, 

v* = IT”+ CI At-j iqp, 6, B, P)” 

~*=A”+aAtv”xB” 

P*=P”-aAt(v”.VP”iyP”V.u”) 

p* = p” - CI AtV. (~6)” 

B*=vxA* 

where P represents the right side of Eq. (1). The semi-implicit term is include 
the corrector velocity advance: 

21 n+l (At)’ -p,[vxvx(v”+‘xc,)]xc~ 

(At)* =s+~qp, v, E, P)*--- p* [VXVX (PX C,)] x co. 
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The new velocity is used in the magnetic field, pressure, and density advances, 

y$**=A”+g [(en+1 + V”) x I?*] 
L 

(22) 

P n+l=p.-$ [(fin” +v”)TP*+yPV~(v”+‘+?)] 

P “+l++ [p*(g”+’ + V”)]. 

(23) 

(24) 

Finally, a time step is completed with a semi-implicit resistive advance 

A “+‘+Atr]oVxVxA”+‘=A**-At~VxVxA**+At~oVxVxA**. (25) 

The resistive part of the MHD equations has been split from the ideal part and 
treated semi-implicitly so that the resistive advance does not impose an additional 
timestep constraint. As in the Harned-Kerner algorithm, [ 1 l] the treatment is 
semi-implicit rather than implicit so that nonuniform resistivity may be used 
without requiring convolutions to be performed in the implicit part. 

It is hoped that if a set of conditions like C,? B,, C, 2 By, and C,k B, is 
satisfied, the method would be unconditionally stable with respect to both the fast 
compressional and shear Alfven modes. For a l-dimensional case a linear stability 
analysis shows that this is true. However, the critical difference between this method 
and that used for the fast modes is that C, is a vector rather than a scalar. Unfor- 
tunately, one finds for a 2-dimensional stability analysis that unconditional stability 
for the fast and shear modes can occur only when C, is parallel to B. This means 
that when B is nonuniform, C, must be nonuniform as well. This makes the method 
equivalent to an implicit method, requiring the solution of complicated matrix 
equations for the time advance. Such a method is impractical and defeats the pur- 
pose of the semi-implicit method. 

To solve this problem, it is important to realize that the form of the semi-implicit 
terms is completely arbitrary (although extreme choices may seriously degrade the 
accuracy of the method). The terms should be chosen to enhance the numerical 
stability of the method, yet still be simple to treat implicitly. In a 2-dimensional 
stability analysis, the terms having semi-implicit coefficients CjCj, with i#j, are 
destabilizing when C, and B,, are not parallel. When these terms are set to zero, an 
unconditionally stable algorithm results. In addition, this new modified algorithm 
has the desirable property that the semi-implicit coefficients enter only as Cf, so 
that the sign of the coefficients does not matter. 

To demonstrate the linear stability properties of the method, consider a 2-dimen- 
sional cold ideal case with a uniform density and equilibrium magnetic field. The 
MHD equations reduce to 
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(26) 

Let A= A$, V= ~,~i + uY j, and d/&z = 0.0. Then a method similar to t 
Eqs. (16)-(24), with et= 1.0, is 

fi* = 6” + At(V x B”) x B” (28) 

Af = A; + At(P x B”); (29) 
p+1 -(At)2[VxVx(v”+1xC,)]xC, 

= P + dt(V x I?“) x B* - (At)‘[V XV x (6” x cO)j x c, 1301 

IS~+‘=A;+At(u”+‘xB*);. (311 

except that Eq. (30) is modified by setting the terms with C,C, equal to zero. The 
spatial differencing is computed with a spectral representation, 

The system, Eqs. (28)-(31) with the C,Cv terms dropped, may be written as the 
matrix equation 

1+N2(C,;-B;) B, B, N2 
= B,B,N2 1 + N2(C;-B;) (32) 

0 0 

where N2 is defined as N2 = (m” + FZ~)(A~)~. Equation (32) is then rewritten in the 
form 

(33) 

where G is the amplification matrix, 

581:65:1-5 



64 HARNED AND SCHNACK 

1-Y $Y - Y/By 
Y 

G= B’x 
BX 

1-X XIBX 

B,(l -X- Y) -B,(l -X- Y) 1 -X- Y 

In Eq. (34) X and Y are defined by 

X- N2B;/( 1 + N2C;) 

and 

Y = N2B;/( 1 + N2C;). 

I- (34) 

To determine the linear stability of the algorithm, the eigenvalues of the 
amplification matrix are computed. In addition to the trivial result, w = 1, they are 

o=l-z*Jz(z-1) (35) 

where 2 = X+ Y. When Z < 4 the eigenvalues lie inside the unit circle. Therefore, as 
desired, the method is unconditionally stable as long as C, 2 B, and C, 2 By. This 
is not the case if the C,C, cross terms are retained in the semi-implicit corrector. 
Although CI 3 0.5 is always required, when CI is reduced below CI = 1.0 in the predic- 
tor, the stability condition, 2 < $, is relaxed and somewhat smaller values of the 
semi-implicit coefficients may be used. 

The complete semi-implicit predictor-corrector algorithm that eliminates both the 
shear Alfven and fast compressional CFL time step constraints is given by 
Eqs. (16)-(25), with the crucial modification that all terms with CiCj are replaced 
by CiCj 6, in Eq. (21). Solving this system is not difficult. A spectral representation 
is used in two directions. In the x direction (or the radial direction for cylindrical 
coordinates) centered finite differences are used. All of the quantities in the ideal 
advance are advanced explicitly with the exception of the velocity corrector. In the 
velocity corrector the semi-implicit term on the left-hand side is treated implicitly, 
but no convolutions are required. Therefore, this equation is a block tridiagonal 
matrix equation with 3 x 3 blocks. This equation may be solved easily without 
adding any significant amount of computation time per time step, when compared 
to an explicit method. This is because for any case with at least a few modes, the 
computation time is dominated by the convolutions. As the plasma evolves non- 
linearly in time the coefficients, Ci, may be varied in time (and in space, if desired) 
to preserve linear stability with respect to the new values of magnetic field and 
pressure. The method described here is first-order accurate in time for a > 0.5. The 
algorithm of Eqs. (16)-(24) may be made second-order accurate in time by adding 
one additional corrector step in which the semi-implicit terms are all at the new 
time level. A similar procedure is used by Joyce [ 171 in a second-order semi- 
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implicit algorithm for beam propagation problems. Although second-order 
accuracy in time is not critical for explicit methods due to their small time ste 
semi-implicit methods which may use very large time steps it can provide a. 
significant improvement over a first-order method. 

III. NUMERICAL Tzs~s 

The new semi-implicit algorithm described in Section II has been tested in slab 
and cylindrical geometry to demonstrate its numerical stability properties. In a slab 
we assume a constant density, p = 1.0. The y and z directions are periodic and are 
treated with a spectral representation. Finite differences are used in the x direction. 
Rigid conducting well boundary conditions are imposed at x = 0.0 and x = 1.0. 
First, a uniform magnetic field is initialized with B, = 1.0 and B, = 0.2. We apply 
the following 3-dimensional perturbation with m = 1 and n = 1, where 6 is the per- 
turbation amplitude: 

v, = (0.96/2n)6 sin(my + 0%~) sin(2rcx) 

u, = 1.06 cos(my + 0.2nz) cos(2nx) 

v, = -0.26 cos(my + 0.2nz) cos(27cx). 

This is an excitation of a shear Alfven wave with frequency w = k. B = 0.4. e we 
41 grid points and keep modes from m = 1, n = 1 to m = 20, n = 20. Although the: 
wave is linear, the code is nonlinear so that all of the modes are excited. If we do 
not use the semi-implicit method, i.e., set c, = 0.0, then numerical instability results 
of the time step exceeds the usual CFL condition on the fast modes, 
dr < Ax/v, = 0.025. Furthermore, even if the fast mode time step constraint is 
eliminated, the shear Alfven time step constraint limits the time step to d t c 0.24. 
To simulate the Alfven wave we tirst choose a time step of bl= 0.1 which is four 
times the normal GFL limit. The numerical parameter, X, of the predictor-corrector 

E-7 
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5 

K.E. 
E-IO 

5 

TIME 

FIG. 1. Kinetic energy of a shear Alfven wave due to a 3-dimensional perturbation, with o = 0.4 and 
At = 0.1. The semi-implicit method properly simulates the wave even though the time step is four times 
the usual explicit CFL limit. 
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K.E. 

FIG. 2. Kinetic energy of the wave of Fig. 1 except with dt=0.5. This time step is more than twice 
the usual shear Alfven CFL limit for this 20-mode case. The frequency is correct although damping is 
present due to the predictor-corrector scheme. 

method is set to LZ = 0.6. We use C, = 0.7 and C, = 0.2. The kinetic energy of the 
wave is shown in Fig. 1. The expected period of r = 5~ is produced correctly. In 
Fig. 2 we show the result of a simulation with At = 0.5, more than twice the shear 
Alfven limit. Some damping of the wave kinetic energy is apparent due to CI = 0.6 in 
the predictor-corrector method. The wave frequency is still correct. As the time step 
is increased further, the method remains stable but the wave becomes poorly 
represented. In fact, the time step can be raised to extremely large values, such as 
d’t = 200, and the algorithm will be stable but the wave is immediately damped. We 
note that if the cross terms (e.g., C,C,) in the semi-implicit terms are retained, the 
method fails, as expected. 

As a second test we use a uniform magnetic field, B, = 1.0, and apply a 2-dimen- 
sional perturbation with 

uy = 6 cos(ny) cos(27Lx). 

E-l 
5 

K.E. 

E-2 
5 

’ E-3 

5 

TIME 

FIG. 3. Kinetic energy for a shear Alfven wave produced by a large amplitude perturbation. For this 
many mode case the time step, At =O.l, violates the usual stability conditions not only for the 
equilibrium field, B,, but also for the large amplitude perturbed field, B,. Nevertheless, using the semi- 
implicit method stability is ensured and the correct frequency, UI = 1.0, is obtained. 
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FIG. 4. Safety factor, 4, as a function of radius for a cylindrical tokamak equilibrium which is 
unstable to an m = 2, n = 1 resistive instability. 

Twenty modes with m = 0 are retained with the largest being FZ = 200. An additional 
small random perturbation is also applied so that all of the modes are excited. 
Setting C7 = 0.7 and C, = 0.0 would be sufficient to have an u~~o~d~~io~ally stable 
algorithm for a linear wave. However, if the wave has a large amplitude, then 
becomes substantial and it may impose a stability limit as well. For a case when the 
perturbed B,. = 0.3 and At = 0.1, the method goes immediately numerica 
Hovvever, when C,; = 0.3 is used unconditional stability again results. 
energy for the case with C= = 0.7, C, = 0.3, and At = 0.1 is shown in Fig. 3. The 
algorithm is stable even with the large amplitude oscillatory magnetic Gel 
present and the correct frequency is obtained. 

In cylindrical geometry we initialize an equilibrium with B, = 1. 
JO(l - r2/a2), and k, = 0.33. The safety factor at the wall, q(a) = 2nrBZ(a)/L 
set to q(a) = 2.93. The safety factor for this profile is shown in Fig. 4. The r 
is set to y = loo- 5; 200 radial grid points are used and twenty modes 
n = 1 to YM = 40, YE = 20 are retained. The time step is set to At = 1.5 I 
transit times. The normal CFL limit for an explicit code would be Al < O.OQ5 for the 

K.E 

Fir,. 5. Kinetic energy as a function of time for the unstable equilibrium of Fig. 4. The time step 
exceeds the usual CFL limit for the shear Alfven modes by more than a factor of ten, yet the growth rate 
is accurate to within a few percent. 
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Vr 

FIG. 6. Radial velocity profile for the m = 2, n = 1 mode during linear growth from the equilibrium 
of Fig. 4. 

fast modes and At ~0.12 for the shear Alfven modes. Hence, both of these con- 
ditions have been violated by more than a factor of ten. For this case we allow the 
semi-implicit coefficients to vary with radius and time. At each time step the com- 
ponents of C, are set to 0.9 times the maximum value of their respective magnetic 
field components at a given radius. A random perturbation is applied so that the 
fastest growing unstable mode should eventually dominate. We expect to observe 
an m = 2, n = 1 instability with a growth rate of y = 0.0046. The kinetic energy as a 
function of time is plotted in Fig. 5. The growth rate obtained from the simulation 
is y = 0.0044, giving good agreement. The profiles of v, and J, are shown in Figs. 6 
and 7, respectively. In Fig. 8 are plotted helical flux contours, showing the m = 2, 
n = 1 island near the saturation of linear growth. The time step may be increased 
further. However, very large time steps degrade the accuracy of the results. A time 
step of five Alfven times, At = 5.0, using the first-order accurate method gives a sub- 
stantially smaller growth rate for the instability, y = 0.0028, and the velocity and 
current profiles show a departure from the proper eigenfunctions. When we use the 
second-order accurate algorithm we obtain an accurate value for the growth rate, 

FIG. 7. J, profile for the m = 2, n = 1 mode during linear growth from the equilibrium of Fig. 4. 



MAGNETOHYDRODYNAMIC COMPUTATIONS 

FIG. 8. Helical flux contours for the case of Fig. 4 showing the m =I, n = 1 island near the 
saturation of linear growth. 

y = 0.0044, even with At = 5.0. If still larger time steps are used, such as idt = 10.9, 
the method remains stable, but the accuracy for even the second-order accurate 
method is poor. Typically we find that accuracy begins to deteriorate for tearing 
mode computations when the time step becomes comparable to the Alfven transit 
time down the length of the cylinder. In some highly nonlinear problems, such as 
tokamak disruptions in which the flow velocity may approach the A 
advection can impose an important stability restriction In such cases, without an 

icit treatment of the advective terms, the time step must be reduced accor- 
ly. In terms of computing time, we note that for the preceding tearing mode 

calculation with 20 modes, the computation time require for a time step using the 
first-order accurate method is only 5% more than for an ex , even 
though the time step may be more than 300 times larger. -ordeK 
accurate method is used the computation time required per time step is 50% more 
than for an explicit method. 

Iv. CONCLUSION§ 

A new semi-implicit method for solving the M D equations in three Dimensions 
has been developed. The method allows simulations tia use very large time steps 
since both the shear Alfven and the fast compressional CFL conditions have been 
eliminated. The method is simple to implement. The most difficult part of the time 
advance is the solution of a block tridiagonal system of 3 x 3 blocks. Therefore, t 
method requires virtually the same amount of computation time per time step as an 
explicit method. 
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The method has been tested on simple problems in slab and cylindrical geometry, 
which verify the unconditional stability of the algorithm with respect to both shear 
Alfven and fast compressional modes. The primary limiting factor on a time step 
now appears to be accuracy. In the algorithm of [ 111, the results using first-order 
and second-order accurate methods are essentially identical. In that algorithm time 
steps were limited by the shear Alfven CFL condition and were therefore sufficiently 
small so that error due to the time discretization would be negligible. However, in 
the present algorithm the stability limits permit very large time steps so that the 
time discretization error becomes significant. For this reason it is advantageous to 
implement the algorithm with second-order accuracy in time. It is now desirable to 
apply the new method to modeling the nonlinear evolution of resistive instabilities 
in realistic tokamak and reversed-field pinch equilibria. 
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